Physiological and Pathological Significance of Dynamin-Related Protein 1 (Drp1)-Dependent Mitochondrial Fission in the Nervous System
نویسندگان
چکیده
Mitochondria are essential for proper neuronal morphogenesis and functions, as they are the major source of energy for neural development. The dynamic morphology of mitochondria determines the key functions of mitochondria. Several regulatory proteins such as dynamin-related protein 1 (Drp1) are required to maintain mitochondrial morphology via a balance between continuous fusion and fission. Activity of Drp1, a key regulator in mitochondrial fission, is modulated by multiple post-translation modifications and receptor interactions. In addition, numerous researches have revealed that the regulation of Drp1 activity and mitochondrial dynamics is closely associated with several neurodegenerative diseases such as Alzheimer's and Parkinson's diseases. In this article, we concisely review the recent findings about the biological importance of Drp1-mediated mitochondrial fission in neurons under physiological and pathological conditions.
منابع مشابه
Drp1-Dependent Mitochondrial Fission Plays Critical Roles in Physiological and Pathological Progresses in Mammals
Current research has demonstrated that mitochondrial morphology, distribution, and function are maintained by the balanced regulation of mitochondrial fission and fusion, and perturbation of the homeostasis between these processes has been related to cell or organ dysfunction and abnormal mitochondrial redistribution. Abnormal mitochondrial fusion induces the fragmentation of mitochondria from ...
متن کاملCyclin-dependent kinases regulate splice-specific targeting of dynamin-related protein 1 to microtubules
Fission and fusion reactions determine mitochondrial morphology and function. Dynamin-related protein 1 (Drp1) is a guanosine triphosphate-hydrolyzing mechanoenzyme important for mitochondrial fission and programmed cell death. Drp1 is subject to alternative splicing of three exons with previously unknown functional significance. Here, we report that splice variants including the third but excl...
متن کاملMitochondrial Function and Actin Regulate Dynamin-Related Protein 1-Dependent Mitochondrial Fission
Mitochondria display a variety of shapes, ranging from small and spherical or the classical tubular shape to extended networks. Shape transitions occur frequently and include fusion, fission, and branching. It was reported that some mitochondrial shape transitions are developmentally regulated, whereas others were linked to disease or apoptosis. However, if and how mitochondrial function contro...
متن کاملStructural and functional analysis of MiD51, a dynamin receptor required for mitochondrial fission
Mitochondrial fission is important for organelle transport, inheritance, and turnover, and alterations in fission are seen in neurological disease. In mammals, mitochondrial fission is executed by dynamin-related protein 1 (Drp1), a cytosolic guanosine triphosphatase that polymerizes and constricts the organelle. Recruitment of Drp1 to mitochondria involves receptors including Mff, MiD49, and M...
متن کاملDynamin-Related Protein 1 Translocates from the Cytosol to Mitochondria during UV-Induced Apoptosis
Mitochondria are dynamic structures that frequently divide and fuse with one another to form interconnecting network. This network disintegrates into punctiform organelles during apoptosis. However, the mechanisms involved in these processes are still not well characterized. In this study, we investigate the role of dynamin-related protein 1 (Drp1), a large GTPase that mediates outer mitochondr...
متن کامل